Search results for "Bounded element"
showing 10 items of 10 documents
Banach elements and spectrum in Banach quasi *-algebras
2006
A normal Banach quasi -algebra (X;A_0) has a distinguished Banach - algebra X_b consisting of bounded elements of X. The latter -algebra is shown to coincide with the set of elements of X having fi nite spectral radius. If the family P(X) of bounded invariant positive sesquilinear forms on X contains suffi ciently many elements then the Banach -algebra of bounded elements can be characterized via a C -seminorm defi ned by the elements of P(X).
Fully representable and*-semisimple topological partial*-algebras
2012
We continue our study of topological partial *-algebras, focusing our attention to *-semisimple partial *-algebras, that is, those that possess a {multiplication core} and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the scope of characterizing a *-semisimple partial *-algebra. Finally we describe various notions of bounded elements in such a partial *-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome …
Bounded elements of C*-inductive locally convex spaces
2013
The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.
Locally convex quasi *-algebras with sufficiently many *-representations
2012
AbstractThe main aim of this paper is the investigation of conditions under which a locally convex quasi ⁎-algebra (A[τ],A0) attains sufficiently many (τ,tw)-continuous ⁎-representations in L†(D,H), to separate its points. Having achieved this, a usual notion of bounded elements on A[τ] rises. On the other hand, a natural order exists on (A[τ],A0) related to the topology τ, that also leads to a kind of bounded elements, which we call “order bounded”. What is important is that under certain conditions the latter notion of boundedness coincides with the usual one. Several nice properties of order bounded elements are extracted that enrich the structure of locally convex quasi ⁎-algebras.
C*-seminorms generated by families of biweights on partial *-algebras
2011
If A[t] is a topological partial *-algebra with unit, topologized by the family of seminorms {p_a}, the notion of bounded element is defined, and some conditions to obtain an unbounded C*-seminorm q(x)=sup p_a(x) on A[t] with domain the subalgebra of bounded elements of A[t] are given.
An overview on bounded elements in some partial algebraic structures
2015
The notion of bounded element is fundamental in the framework of the spectral theory. Before implanting a spectral theory in some algebraic or topological structure it is needed to establish which are its bounded elements. In this paper, we want to give an overview on bounded elements of some particular algebraic and topological structures, summarizing our most recent results on this matter.
Bounded elements in certain topological partial *-algebras
2011
We continue our study of topological partial *algebras, focusing our attention to the interplay between the various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between the strong and the weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *algebras, emphasizing the crucial role played by appropriate bounded elements, called $\M$-bounded. Finally, some remarks are made concerning representations in terms of the so-called partial GC*-algebras of operators.
Order boundedness and spectrum in locally convex quasi *-algebras
2021
After a quick sketch of the basic aspects of locally convex quasi *-algebras, we focus on order bounded elements and use them to analyze some spectral properties, trying to generalize the approach already studied in the Banach case.
Order bounded elements of topological *-algebras
2012
Several different notions of {\em bounded} element of a topological *-algebra $\A$ are considered. The case where boundedness is defined via the natural order of $\A$ is examined in more details and it is proved that under certain circumstances (in particular, when $\A$ possesses sufficiently many *-representations) {\em order boundedness} is equivalent to {\em spectral boundedness}.
Faithfully representable topological *-algebras: some spectral properties
2018
A faithfully representable topological *-algebra (fr*-algebra) A0 is characterized by the fact that it possesses sufficiently many *-representations. Some spectral properties are examined, by constructing a convenient quasi *-algebra A over A0, starting from the order bounded elements of A0.